Электрофильтры. Электростатический фильтр для очистки воздуха от пыли и запахов Виды воздушных фильтров

Электростатический фильтр для очистки воздуха от пыли и неприятных запахов относится к области электротехники, а именно, к электростатическому разделению материалов, к выделению дисперсных частиц и частиц пахучих веществ из воздуха с использованием электростатического эффекта и дезодорации, конкретно, к аппаратам очистки воздуха от аэрозольных частиц и неприятно пахнущих веществ в системах кондиционирования и вентиляции. Электростатический фильтр содержит: коро6, заземленные электрические электроды, потенциальные диэлектрические электроды, слой замасливателя на потенциальных и заземленных диэлектрических электродах на основе лавандового масла, источник питания. Осаждение частиц в фильтре происходит за счет сил электрического поля межэлектродного промежутка. Замасливатель усиливает эффект осаждения пылевых частиц на пластинах благодаря силам адгезии, а также снижает вероятность вторичного уноса частиц. Наличие замасливателя совместно с пластинами создает двухслойный диэлектрик, также способствующий увеличению эффекта осаждения за счет увеличения напряженности электрического поля. Таким образом лавандовое масло, используемое в электростатическом фильтре, усиливает эффект осаждения дисперсных частиц, содержащихся в воздухе и за счет дезодорирующих свойств обеспечивает очистку проходящего через фильтр воздуха от неприятных запахов.

Электростатический фильтр для очистки воздуха от пыли и запахов относится к области электротехники, а именно, к электростатическому разделению материалов, к выделению дисперсных частиц и частиц пахучих веществ из воздуха с использованием электростатического эффекта и дезодорации, конкретно, к аппаратам очистки воздуха от аэрозольных частиц и неприятно пахнущих веществ в системах кондиционирования и вентиляции.

Известно устройство для очистки воздуха в помещении, содержащее корпус, размещенный в нем ионизатор, кювету с водой и вентилятор (RU 2172897 C1, МПК F 24 F 3/16).

Техническим результатом является повышение степени очистки воздуха, устранение запаха в помещении, осуществлении частичной стерилизации воздуха.

Недостатком данного устройства является то, что в известном устройстве при его работе выделяется озон, что может негативно сказываться на здоровье человека при превышении концентрации озона в воздухе выше допустимой. Кроме того, использование известного устройства связано с опасностью поражения электрическим током, т.к. в одном корпусе расположены озонатор (т.е. имеется повышенное напряжение) и открытая кювета с водой,

Известен нейтрализатор запаха в туалетной комнате, включающий корпус, в котором расположен излучатель в качестве которого используется безэлектродная кварцевая ртутная лампа, схема возбуждения излучателя, сетевой фильтр, имеющий встроенный вентилятор с воздуховодом для выдува озона в помещение (RU 23096 U1, МПК F 24 F 3/16, A 61 L 2/10).

Техническим результатом является выдув озона в помещение туалетной комнаты, который в свою очередь распадаясь на молекулярный

и атомарный кислород, обогащает замкнутое пространство помещение туалетной комнаты кислородом и нейтрализует запах аммиака.

Недостатком указанного устройства, как и у первого аналога, является то, что в известном устройстве при его работе выделяется озон, что может негативно сказываться на здоровье человека при превышении концентрации озона в воздухе выше допустимой.

Наиболее близким устройством того же назначения к заявляемой полезной модели по совокупности признаков является устройство -электростатический фильтр с увеличенной площадью осаждения, включающее в себя систему питания, систему контактов, чередующиеся между собой потенциальные и заземленные пластинчатые электроды установленные в коробчатом корпусе, вертикально относительно него и параллельно воздушному потоку и механически закрепленному в нем. Электроды выполнены из диэлектрического материала и между ними установлены нейтральные электроды, которые параллельны пластинчатым электродам, равны им и установлены на одинаковом расстоянии от двух соседних.

В данном устройстве частицы аэрозоля имея биполярный электрический естественный заряд, попадают в межэлектродный промежуток, поляризуются и осаждаются на том или ином осадительном электроде в зависимости от знака заряда частицы.

Недостатком данного устройства, принятого за прототип, является то, что в известном устройстве отсутствует эффект дезодорации воздуха (очистки воздуха от неприятных запахов), тем самым эффект очистки воздуха не достаточно полный.

Задачей, на решение которой направлено заявляемое техническое решение - улучшение очистки воздуха, конкретно очистки воздуха от неприятнопахнущих веществ.

При осуществлении технического решения повышается качество очистки воздуха.

Указанный технический результат при осуществлении полезной модели достигается тем, что в известном устройстве, содержащем систему питания, систему контактов, чередующиеся между собой пластинчатые электроды, установленные в коробчатом корпусе, выполненные из диэлектрического материала толщиной не менее 0,5 мм, на которые нанесен слой замасливателя на основе лавандового масла.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявляемой полезной модели, позволил установить, что не обнаружен аналог, характеризующийся признаками заявляемой полезной модели. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности существенных признаков аналога, позволил выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявляемом электростатическом фильтре для очистки воздуха от пыли и запахов, изложенных в формуле полезной модели. Следовательно, заявляемая полезная модель соответствует критерию «новизна».

Заявляемая полезная модель иллюстрируется чертежом.

На фиг.1 представлен электростатический фильтр для очистки воздуха от аэрозольных частиц и неприятных запахов.

Предлагаемый электростатический фильтр содержит: короб 1, заземленные электрические электроды 2, потенциальные диэлектрические электроды 3, слой замасливателя на потенциальных и заземленных диэлектрических электродах 4, источник питания 5.

Выполнение плоских электродов предлагаемого электростатического фильтра из диэлектрического материала толщиной не менее 0,5 мм, обеспечивает жесткость пластин, дает возможность выполнить пластинчатые электроды и установить их параллельно друг другу и боковым стенкам корпуса.

Предлагаемый электростатический фильтр работает следующим образом: частицы аэрозоля и неприятного запаха, имея биполярный электрический заряд, попадают в межэлектродный промежуток, поляризуются и осаждаются на том или ином осадительном электроде 2,3 в слое замасливателя 4, в зависимости от знака частицы.

Осаждение частиц в фильтре происходит за счет сил электрического поля межэлектродного промежутка. Замасливатель 4 усиливает эффект осаждения пылевых частиц на пластинах 2,3 благодаря силам адгезии, а также снижает вероятность вторичного уноса частиц. Наличие замасливателя 4 совместно с пластинами 2,3 создает двухслойный диэлектрик, также способствующий увеличению эффекта осаждения за счет увеличения напряженности электрического поля.

Таким образом лавандовое масло, используемое в электростатическом фильтре, усиливает эффект осаждения дисперсных частиц, содержащихся в воздухе и за счет дезодорирующих свойств обеспечивает очистку проходящего через фильтр воздуха от неприятных запахов. По сравнению с прототипом, предлагаемый электростатический фильтр позволяет улучшить качество очистки воздуха.

1. Электростатический фильтр, содержащий систему питания, систему контактов, чередующиеся между собой потенциальные и заземленные пластинчатые электроды, установленные вертикально в корпусе, параллельно воздушному потоку и закрепленные в нем, выполненные из диэлектрического материала, отличающийся тем, что на пластинчатые электроды нанесен слой замасливателя.

2. Устройство по п.1, отличающийся тем, что замасливатель изготовлен на основе лавандового масла.

В группу аппаратов электрического очистки входят электростатические осадители разного типа, которые традиционно называют электрофильтрами. По конструкции электрофильтры значительно отличаются от электрических п пылеуловителей, применяемых для очистки воздуха и газов, которые улавливают высокодисперсный пыль в значительных концентрациях.

В промышленности широко используют несколько типовых конструкций сухих и мокрых электрофильтров для очистки воздуха от технологических выбросов пыли

На рис 311 и 312 приведены основные виды сухих электрических фильтров

Рис 311. Принципиальная схема сухого двухзональный электрического фильтра : 1 - зона ионизации воздуха, 2 - источник питания 3 - помещу-вальна зона

Рис 312. Схема современного электрофильтра"Пеципитрон" : 1 - решетка для выравнивания потока воздуха 2 - ионизатор 3 - пластины, на которых оседают частицы пыли, 4 - источник высокого напряжения, 5 - подключение к электросети; 6 - подведение электротока напряжением 6 кВ до трубок ионизатора, 7 - подведена шина, 8 - элемент, на котором оседают частицы (общий вид

Опишем принцип работы двухзональный электрического фильтра. Поток очищаемого воздуха сначала проходит через ионизационную зону 1, имеет вид решетки из металлических пластинок с натянутыми между ними сентября ртикальнимы коронирующих электродов из тонкой проволоки. К коронирующих электродам подводится напряжение 13-15 кВ положительного полюса специального питательного электрического агрегата 2, выпрямляет переменный элек рострум и повышает его напряжение. В ионизационной зоне частицы пыли заряжаются. Далее воздух проходит через осадительной зону 3, имеет вид пакета металлических пластинок, установленных параллельно друг к другу на расстоянии от 8 до 12 мм. До пластин через одну подводится напряжение 6,5-7,5 кВ положительного заряда. Пыль осаждается на промежуточных заземленных пластинастинах.

При подаче напряжения на фильтр вокруг коронирующих электродов образуется неоднородное электрическое поле, в результате чего возникает электрический разряд. Электроны, не получили от электрического поля к остатня количества энергии, возвращаются на прежний уровень энергии, отдавая аккумулированную энергию в виде ультрафиолетовых лучей. Вследствие этого коронный разряд вызывает легкое свечение электро родеів.

В металлургической и машиностроительной промышленностях широко используются сухие горизонтальные двухсекционные электрофильтры для очистки воздуха от мелкодисперсной пыли (рис 313)

Сухие электрофильтры типа. УГМ (унифицированные горизонтальные малогабаритные) рекомендуют для тонкой очистки воздуха от пыли различной дисперсности

Мокрые электрофильтры применяют для очистки воздуха от пыли большой дисперсности, частиц смол и др.. На рис 314 изображена конструктивная схема мокрого электрофильтра типа. С. В корпусе 3 установлены и коронирующих и осадительных электродов 2, к которым подводят запыленный воздух через распределительные решетки 1. В верхней части фильтра установлены смоловловлювальни зонты 4. Уловленная на электродах смола сти кает в бункер и через гидро-затвор выводится из аппарата. При загущении смолы аппарат розигриваютрівають.

Эффективность очистки воздуха от пыли электрофильтрах можно определить по формуле. Дейча

где. Рп - удельная поверхность осадительных электродов, равная отношению поверхности осадительных элементов к расходу очищаемого воздуха в м2с/м3;. Соэ - скорость потока воздуха че-

Рис 313. Схема сухого горизонтального электрофильтра : 1 - воздухораспределительные решетка, 2 - электроды, 3 - бункер, 4 - механизм отряхивания

рез электрофильтр. Из формулы (35) следует, что эффективность очистки воздуха в электрофильтрах возрастает с увеличением значения показателя степени соэ ^:

"ОЛР 3,0. ЗД 3,9 4,6

Е 0,95 0,975 0,98 0,99

На эффективность электрофильтров также влияют конструкция ионизаторов, разрядных и осадительных электродов

Конструкция разрядных и осадительных электродов может быть разной. На рис 315 и 316 изображены конструкции различных типов разрядных и осадительных электродов

На эффективность этих электрофильтров негативно влияют следующие факторы:

Возникновение искровых зарядов при опылении осадительных электродов увлажненным пылью, которые могут вызывать электрические пробои и взрыв воздушно-пылевой смеси;

Сметания воздушным потоком с осадительных электродов осевшей пыли;

Рис 314. Схема мокрого электрофильтра типа. С

Обрыв тонких электродов, их вибрация;

Электрические пробои, возникающие вследствие попадания в осадительной зону волокон и крупных частиц пыли и вызывают ямкоподибни воронки осевшей пыли, который выносится воздушным потоком. Движение крупных х вырванных агломератов в мижелектричному пространстве может вызвать дальнейшие пробое. Кроме этого, пробои сопровождаются кратковременным значительным увеличением электрического токму.

Для предотвращения искровым разрядам и пробой регламентирующих величину электронапряжения, подаваемого на осадительных электродов, которая не должна превышать 6,6-7,5 кВ. Для предотвращения сметания и разрывам в осевшей пыли на осадительных электродах рекомендуемая скорость пылевоздушной потока - 2 м /с.

Чтобы частицы пыли успели осесть на заземленном электроде при их движении в осадительной зоне со скоростью воздушного потока в случае их входа в промежуток между пластинами фильтра, длина ихньог го пути должно быть не более

где. Ь - расстояние между помещу тельном пластинками; сол - скорость движения воздушного потока, м / с; ос - скорость сепарации пыли, м / с

При температуре 20 °. С скорость сепарации определяют по формуле

где и - напряжение поля в ионизаторе;. Ь - коэффициент, зависящий от диэлектрической постоянной величины частицы г - постоянная ве-

Рис 315. Конструкции основных типов разрядных электродов

Рис 316. Конструкции основных типов осадительных электродов

величина, зависящая от диэлектрических свойств частицы пыли и ос - электронапряжения на заряженных осадительных элементах; й - диаметр частиц пыли

С формул (36) и (37) видно, что для уменьшения длины осадительных пластинок, а значит, глубины габаритных размеров фильтра в 4 раза без снижения эффективности, межэлектродный пространство необходимо убыв шить в 2 раза. Рекомендуемое расстояние между электродами 8-12 м мм.

Каждый современный человек, ценящий свое здоровье, в конце концов, начинает задумываться о качестве воздуха, которым он дышит. Борьба с пылью, табачным шлейфом, а также иными побочными элементами, витающими в окружающей среде, невозможна без использования специального электростатического современного очистителя воздуха.

Все известные электростатические модели созданы для выполнения единой цели – очищение воздуха от пыли и вредных элементов. Однако, сколько существует разновидностей моделей, столько есть различных возможностей приборов.

Критерии выбора очистителей

Осуществляя покупку очистителя воздуха, следует тщательным образом изучить прилагаемую документацию и только после этого из приглянувшихся моделей отдать предпочтение наиболее подходящей. Для правильного и рационального приобретения прибора необходимо заранее знать площадь, кубатуру помещения, причину возникновения неприятного запаха.

Критерии отбора:

  1. Площадь обслуживания.
  2. Уровень шума. Чем ниже уровень шума, тем дольше можно оставлять рабочим прибор в самом помещении.
  3. Потребляемая мощность. В некоторых случаях для поддержания заданного качества воздуха необходимо постоянно держать включенным прибор. Мощность потребляемой энергии показывает, какое количество киловатт будет потрачено для обеспечения должного уровня.
  4. Степень очистки. Является самым важным техническим параметром. И количество таковых степеней является прямым показателем качества получаемого воздуха в помещении.

Принцип работы фильтра

Все очистители воздуха могут классифицироваться только в соответствии с используемой конструкцией и набором фильтров, которые для электростатических фильтров не заменяются, а подлежат чистке.

Фильтром в электростатических очистителях воздуха являются две или более пластины, на которые при воздействии преобразователя поступает заданное напряжение для образования устойчивого поля.

Пылинки, которые падают вместе с воздухом в область между пластинами, притягиваются к ним и оседают. Такое условие обязывает владельцев для получения качественной фильтрации воздуха периодически осуществлять чистку увлажнителя , рекомендуемая частота которой указана в технической документации.

Достоинства и недостатки электростатических очистителей

Достоинства приборов

  1. Способны уловить все частицы, которые имеют возможность приобретать заряд.
  2. Бесшумная работа.
  3. Низкий уровень энергопотребления.

Недостатки приборов

  1. Невысокая производительность.
  2. Очистители продуцируют озон. Высокая концентрация озона является токсичной для человека, которая проявляется в виде головной боли, повышенной утомляемости, приступов астмы и так далее.
  3. Плохо сконструированные или сломанные приборы могут образовать опасные соединения для здоровья человека.

В настоящее время на рынке представлено множество моделей электростатических очистителей, различающихся между собой функциональными возможностями, техническими характеристиками, производителями.

Наибольшую популярность относительно надежности и долговечности получили очистители следующих компаний: Daikin, Electrolux, Venta, Tree Air и Boneco. Стоимость большинства моделей этих компаний находится в пределах от 50 до 250 долларов, в зависимости от производительности, сервисных функций и степеней очистки.

Электростатический фильтр - устройство, предназначенное для очистки воздуха от самой мелкой пыли, аэрозолей, дыма, частиц сажи, копоти, т. е. любых механических и аэрозольных частиц. Оптимальное решение для удаления из воздуха твердых, жидких и биологических аэрозолей.

Принцип работы электростатического фильтра

Процесс улавливания механических частиц в электростатическом фильтре разделен на несколько стадий:

  • зарядка взвешенных частиц электрическим полем;
  • движение заряженных частиц к электродам;
  • осаждение заряженных частиц на блоке осаждения.

Принцип действия электростатических фильтров основан на притяжении электрических зарядов разной полярности. Загрязненный воздух проходит через блок зарядки аэрозолей, в котором частицы приобретают электрический заряд. Значение этого заряда зависит от конструкции коронатора и размера частицы и может составлять от 10 до 500 зарядов-электрона. Заряженные частицы, находящиеся в воздушном потоке, в результате адсорбции на их поверхности ионов и под влиянием сил электростатического поля движутся с потоком воздуха и оседают на токопроводящих пластинах противоположной полярности.

В процессе работы любого электростатического фильтра всегда образуется озон. Именно озон является источником запаха от электростатических фильтров, который принято называть «воздух, как после грозы». Необходимо отметить, что озон - сильнейший окислитель и даже в небольших количествах является ядом и канцерогеном. В коронаторах, работающих при электростатическом напряжении больше 15 кВ, происходит разрушение прочных молекул N 2 и образуются окислы азота (NO Х).

Профессиональные воздухоочистители Аэролайф

В системах очистки воздуха Аэролайф используются электростатические фильтры, совмещенные с барьерным НЕРА-фильтром. Такая комбинация не дает возможности для вторичного уноса частиц пыли, т. е. все частицы остаются в пылевом фильтре, при этом загрязнители оседают по всему объему фильтрующего элемента, а любые типы микроорганизмов инактивируются.

Преимущества и недостатки технологии:

  • С высокой эффективностью удаляет из воздуха твердые и жидкие аэрозоли. Минимальный размер улавливаемых частиц 0,01 мкм.
  • Не требует затрат на сменные элементы и расходные материалы.
  • Длительный срок эксплуатации при минимальных начальных капиталовложениях.
  • Газообразные химические загрязнители не улавливаются электростатическим фильтром.
  • Загрязнители накапливаются на осадительных пластинах, которые, в свою очередь, требуют сервисного обслуживания.
  • На эффективность фильтрации сильно влияют параметры улавливаемых частиц (слипаемость, химический состав, сыпучесть), а также содержание воды в капельной фазе в обрабатываемом воздушном потоке.
  • В процессе работы электростатического фильтра в воздух попадают озон и окислы азота - крайне ядовитые вещества.

Способ электрической очистки газов от взвешенных частиц основан на явлении ионизации газовых молекул электрическим зарядом в электрическом поле. Газы как диэлектрики не проводят электрический ток. Однако при определенных условиях электропроводность газов наблюдается. Это связано с тем, что атомы или молекулы газа становятся электрически заряженными. Незначительное количество заряженных частиц всегда имеется в газе. Их появление связано с воздействием ультрафиолетовых и космических лучей, радиоактивных газов, высокой температуры и т. д. Если такой газ, содержащий некоторое количество носителей зарядов, поместить между электродами, соединенными с источником тока высокого напряжения, то ионы и электроны начнут двигаться в газе по силовым линиям поля. Направление движения каждого носителя заряда будет определяться величиной заряда, а скорость движения  напряженностью электрического поля. При достаточно большой напряженности поля (например около 16 кВ/см для воздуха при атмосферном давлении и комнатной температуре) движущийся носитель заряда приобретает столь высокую скорость, что, столкнувшись на своем пути с нейтральной газовой молекулой, способен выбить из нее один или несколько внешних электронов, превращая молекулу в положительный ион и свободный электрон. Вновь образовавшиеся ионы также приходят в движение под действием поля, производя дальнейшую ионизацию газа. Такая ионизация называется ударной ионизацией . Число о

Рис. 12.Основные системы электродов электрофильтров:

а – электрофильтр;

б – пластинчатый электрофильтр; +U, -U – приложенное к электродам напряжение; R – радиус трубчатого электрода; H – расстояние между проводом и пластинчатым электродом; d – расстояние между проводами; r – радиус провода

бразующихся при этом ионов и электронов возрастает лавинообразно, а при дальнейшем усилении поля ими заполняется все пространство между электродами, благодаря чему создаются условия для электрического разряда.

Наиболее распространенными и важными для электрической очистки газа являются искровой, дуговой и коронный разряды. Первые два вида разрядов могут возникать как в однородном, так и в неоднородном электрическом поле, являясь помехой в работе электрофильтра. Коронный разряд может возникать только в неоднородном электрическом поле и при определенных форме и расположении электродов. Коронный разряд используют для электрической очистки.

В электрофильтрах применяют два типа электродов:

а) электроды трубчатого электрофильтра (провод в цилиндрической трубе, рис. 12 а );×

б) электроды пластинчатого электрофильтра (ряд проводов между пластинами, рис. 12 б ).

Густота силовых линий поля, а следовательно, и напряже. нность поля намного больше у провода, чем у пластины или стенки трубы. Вследствие указанной неоднородности поля ударная ионизация, а затем и электрический разряд могут возникнуть у поверхности провода, когда напряженность поля в этой области достаточно высока, но не распространяется до другого электрода. По мере удаления от провода напряженность поля уменьшается и скорость движения электронов в газе становится уже недостаточной для поддержания лавинообразного процесса образованияновых ионов. Электрический разряд такого незавершенного характера носит название коронного разряда . в результате образуются новые ионы, внешним проявлением чего являются голубовато-фиолетовое свечение вокруг провода, негромкое потрескивание и запах окислов азота и озона. Коронный разряд в зависимости от знака заряда на проводе может быть положительным или отрицательным. Внешне они различаются между собой характером свечения. Установлено, что при подаче на коронирующий электрод отрицательной полярности постоянного тока удается достичь улавливания пыли до 99 %, а при положительной – только до 70 %.

При отрицательной полярности представляется возможным держать напряжение до момента наступления искрового пробоя выше, чем при положительной полярности. Это позволяет иметь большой диаметр короны и более высокую напряженность поля, а следовательно, лучшую зарядку и осаждение частиц пыли.

Электрод, вокруг которого возникает коронный разряд, называется коронирующим электродом , второй электрод – осадительным электродом .

Напряженность поля, при которой возникает корона, называется критической напряженностью . Используется источник постоянного тока высокого напряжения. Через разделяющий электроды промежуток течет электрический ток, называемый током короны . Повышение напряжения возможно до величины, при которой электрическая прочность газового промежутка между электродами будет нарушена искровым или дуговым электрическим разрядом, т. е. пока не наступит «пробой» междуэлектродного промежутка.

Установка электрофильтров состоит из двух частей: из собственно электрофильтра или осадительной камеры, через которую пропускается подлежащий очистке газ, и высоковольтной аппаратуры, предназначенной для питания электрофильтра выпрямленным током высокого напряжения.

Питающий электроагрегат состоит из регулятора напряжения, высоковольтного трансформатора, преобразующего переменный ток напряжением 220–380 В в ток напряжения до 10000 кВ, и механического высоковольтного выпрямителя, преобразующего переменный ток в выпрямленный. Последний с помощью высоковольтного кабеля подается на электроды электрофильтра.

В осадительной части электрофильтра смонтированы осадительные и коронирующие электроды. Осадительные электроды могут быть пластинчатыми (из волнистой стали с выштампованными карманами, из угольных пластин и др.) или трубчатыми (из труб круглого или шестиугольного сечения). Коронирующие электроды изготавливают из круглой профилированной проволоки.

Осадительные электроды соединены с положительным контактом механического выпрямителя и заземлены; коронирующие электроды изолированы от земли и соединены с отрицательным контактом механического выпрямителя. При пропускании через межэлектродное пространство электрофильтра очищаемого газа, содержащего твердые либо жидкие взвешенные частицы, происходит зарядка частиц ионами, которые под действием электрического поля двигаются к электродам и оседают на них. Основная масса взвешенных частиц осаждается на осадительных электродах. При этом жидкие взвешенные частицы стекают с электродов, пылевидные частицы удаляют, встряхивая или обстукивая электроды. Уловленные частицы собираются в установленном под электрофильтром бункере, откуда удаляются. В зависимости от того, какие частицы улавливаются, различают сухие и мокрые электрофильтры.

Рис. 13. Корпус (а ) и газораспределяющие устройство (б) горизонтального пластинчатого электрофильтра:

а) 1 – форкамера; 2 – камера для размещения электродов; 3 и 4 – бункера форкамеры и электрофильтра; 5 – изоляторная коробка; 6 – горловина люка обслуживания; б) 1 – фар тук форткамеры; 2 и 3 – передняя и задняя газораспределительные решетки; 4 – боковые газоотсекающие листы; 5 – защитные листы; 6 – фактура бункера; 7 – поперечные листы бункера.

Электрофильтры также различают по направлению движения газов: вертикальные и горизонтальные. Обычно электрофильтры устанавливают параллельно по несколько аппаратов. электрофильтр может состоять из нескольких параллельных секций, чтобы при эксплуатации отключать часть секций (для осмотра, ремонта, встряхивания), не останавливая всю газоочистную установку. Иногда электрофильтры имеют несколько последовательно расположенных по ходу газа ячеек, или, как их иначе называют, электрических полей. По числу электрических полей такие электрофильтры называют двухпольными, трехпольными и т. д. (рис. 13).

Кроме описанных однозонных электрофильтров применяются еще и двухзонные. Если в первых ионизация газа с помощью коронного разряда и осаждение заряженных частиц происходит в одном электрическом поле (одной зоне), то во вторых эти процессы разделены. Двухзонные электрофильтры состоят из ионизатора, представляющего собой систему электродов, расположенных ближе к входу газа, и осадителя, выполненного из электродов пластинчатого типа, на которых осаждается заряженная пыль.

В ионизаторе должно быть исключено осаждение пыли, поэтому он состоит из одного ряда электродов и запыленный газ находится в этой зоне недолго, чтобы пыль успела зарядиться, но не успела осесть.

Скорость перемещения частиц летучей золы в электрическом поле зависит от их размера и величины заряда. Для частиц радиусом меньше 1 микрона величина заряда пропорциональна размерам частицы пыли и не зависит от напряженности электрического поля. Наоборот, величина заряда, который приобретают частицы радиусом больше 1 микрона, зависит главным образом от величины напряженности поля и радиуса частицы (в квадрате).

Время пребывания газов в электрофильтре сильно влияет на качество очистки. Многолетний опыт работы показал, что скорость газов в электрофильтрах невелика (в пределах от 0,5 до 2 м/с), а время пребывания в фильтре значительно (от 2 до 9 с). Поэтому электрофильтры достаточно громоздки. Но гидравлическое сопротивление их невелико (от 50 до 200 Па). Коэффициент очистки, особенно при мелкой пыли, высок (95-99 %). Они хорошо улавливают частицы мельче 10 микрон. Расход энергии на очистку незначителен и составляет 0,10-0,15 кВт×ч на 1000 м 3 очищаемого газа. Основные недостатки электрофильтров: высокая стоимость и необходимость в высококвалифицированном обслуживающем персонале.

На качество очистки в электрофильтрах оказывают влияние температура и влажность газов. При повышении температуры газа снижается напряжение на коронирующих электродах, которое можно поддерживать без пробоя. Это снижает и степень очистки. Влияние влажности газа на напряжение в электрофильтрах обратно влиянию температуры: повышение влажности способствует повышению пробойного напряжения и, кроме того, благоприятно сказывается на поведение слоя пыли на осадительных электродах. Окислы серы (SO 2) адсорбируются в слое пыли на осадительных электродах и изменяют поведение слоя отложений. При высокой концентрации пыли в газах и c увеличением размера частиц увеличивается опасность «запирания короны». Концентрация пыли, при которой наблюдается явление запирания короны, колеблется в зависимости от дисперсного состава пыли от нескольких граммов на 1 Н×м 3 до нескольких десятков граммов на 1 Н×м 3 .

На работу сухих электрофильтров значительное влияние оказывает величина удельного электрического сопротивления улавливаемой пыли. Пыль, содержащуюся в газах, по удельному объемному электрическому сопротивлению можно разделить на три группы:

1) пыль с сопротивлением до 10 Ом/см;

2) пыль с сопротивлением от 10 до 2×10 Ом/см;

3) пыль с сопротивлением более 2×10 Ом/см. В данном случае имеется в виду сопротивление слоя пыли, образующейся на осадительных электродах. Вследствие адсорбции частицами пыли газов и паров, заполняющих пустоты, имеющиеся в пылевом слое, меняется удельное электрическое сопротивление материала, из которого образовалась пыль.

Пылинки первой группы при соприкосновении с осадительными электродами почти мгновенно теряют свой отрицательный заряд и приобретают заряд электродов. Получив одноименный заряд, пылинки отскакивают от электродов и попадают снова в газовый поток. Для надежного улавливания пыли первой группы в конструкции осадительных электродов необходимо предусматривать минимальную скорость газов у их поверхности. Это достигается, например, применением волнистых электродов в горизонтальных электрофильтрах.

Пыль второй группы (ее большинство) улавливается в электрофильтрах без затруднений.

При третьей группе пыли ее слой на осадительных электродах действует как изоляция. Поступающие с оседающей пылью электрические заряды не отводятся на осадительный электрод, а создают в слое пыли напряжение. При повышении напряжения до величины, когда напряженность электрического поля (градиент) становится чрезмерной, в порах слоя, заполненных газом, происходит электрический «пробой». Это явление, получившее название «обратной короны», сопровождается выделением положительных ионов, которые движутся по направлению к коронирующим электродам и частично нейтрализуют отрицательный заряд пылинок. Одновременно положительные ионы, выделяемые осадительными электродами, преобразуют электрическое поле между электродами электрофильтра в поле, аналогичное образующемуся между двумя остриями, которое легко пробивается при невысоком напряжении.

В указанных условиях в электрофильтре невозможно поддерживать напряжение, при котором достигается эффективная очистка газа. Для снижения электрического сопротивления улавливаемой пыли и повышения эффективности электрофильтров рекомендуется:

а) понижение температуры очищаемого газа;

б) увлажнение очищаемого газа перед электрофильтрами (водяной пар сорбируется пылинками и слой пыли становится электропроводным даже при температуре, значительно превышающей точку росы);

в) введение в очищаемый газ тумана серной кислоты, щелочных аминовых соединений и других веществ, понижающих электрическое сопротивление слоя пыли.

Процесс улавливания золы, поступающей с дымовыми газами в электрофильтр, можно условно разделить на четыре этапа:

1) зарядка частиц золы ионами, образующимися в зоне ионного разряда;

2) перемещение заряженных частиц золы в межэлектродном пространстве в сторону осадительного электрода под действием электрических и аэродинамических сил;

3) осаждение и удержание частиц золы на поверхности осадительных электродов;

4) периодическое удаление осевшей на электродах золы в бункер. Для увеличения эффективности очистки газов в электрофильтрах необходимо, чтобы первые два этапа протекали с возможно большей полнотой. Если зарядка частиц в электрофильтре с устойчивым коронным зарядом осуществляется достаточно быстро, то их перемещение к осадительному электроду происходит с относительно небольшой скоростью, зависящей от величины заряда частиц, их размеров, напряженности поля, аэродинамических характеристик потока и т. д. Очевидно, что выделение частиц золы из газов будет тем полнее, чем больше скорость осаждения (скорость дрейфа) частиц и время пребывания очищаемых газов в активной зоне электрофильтра. Так как возможности увеличения скорости дрейфа частиц регламентируются физическими характеристиками процесса, время их пребывания в электрофильтре определяется скоростью газов и длиной активной зоны электрофильтра, что приводит к увеличению объема и стоимости аппарата.

Исследования показали, что при времени пребывания очищаемых газов в электрофильтре менее 8 с нельзя ожидать получения высокой (99 %) степени очистки газов даже при наиболее благоприятных условиях его работы. На основании проведенных ВТИ и НИИОГАЗ промышленных испытаний многопольных электрофильтров установлено, что для обеспечения высокой степени очистки скорость дымовых газов не должна превышать 1,5 м/с. Этот вывод совпадает с данными зарубежных фирм, которые в настоящее время гарантируют высокую степень очистки лишь при времени пребывания не менее 8,5 с и скорости 1,5 м/с. На эти величины и следует ориентироваться при проектировании аппаратов (электрофильтров).

Для котельных агрегатов большой мощности выбор размеров и количества электрофильтров осложняется проблемами размещения этих аппаратов в ячейке блока и компоновки их с котлов и дымососами. На большинстве отечественных электростанций применяется компоновка электрофильтров в один ряд по ширине ячейки блока, когда продольные оси электрофильтров располагаются параллельно продольной оси блока. Такая компоновка позволяет более просто обеспечить равномерное распределение газов между отдельными аппаратами. Но при этом на блоках мощностью 300 МВт и более электрофильтры старых конструкций с высотой электродов 7,5 м не могут удовлетворить предъявляемым требованиям.

Для проектируемых блоков мощностью 300 и 500 МВт с электрофильтрами новой конструкции и электродами 12 м скорость и время пребывания газов соответствует указанным выше требованиям.

Нельзя проектировать электрофильтры на минимальные избытки воздуха и минимальную температуру уходящих газов. Обычно наблюдаемое отклонение этих параметров от проектных является причиной увеличения скорости газов в электрофильтрах на 20–25 % и связанного с этим некоторого ухудшения очистки газов. Таким образом, для обеспечения требуемой очистки дымовых газов мощных электростанций необходимо считать электрофильтры на увеличенное в 1,2 раза количество очищаемых газов (кроме котлов, работающих под надувом).

В последние годы на электростанции поставляются электрофильтры с игольчатыми коронирующими электродами. Характерными особенностями разряда с электродов по сравнению с разрядом, возникающим на электродах штыкового профиля, являются стабильность положения точек коронирования и более высокое значение токовых нагрузок, что особенно важно для аппаратов, устанавливаемых за котлами, оборудованными топками с жидким шлакоудалением, а также при высоком удельном сопротивлении слоя золы или большой запыленности дымовых газов.

При сопоставлении электродов двух указанных типов обращает на себя внимание значительное отличие интенсивности разряда в точках коронирования. Увеличение напряженности поля и силы тока короткого разряда при применении игольчатых электродов объясняется увеличением кривизны поверхности за счет кривизны в двух сечениях. В связи с этим улучшаются условия зарядки частиц золы, что обеспечивает увеличение скорости дрейфа в направлении осадительных электродов. Интенсификация коронного разряда в электрофильтрах при использовании игольчатых коронирующих электродов сопровождается также некоторыми побочными явлениями. В зоне короны находятся электроны с энергией, превышающей энергию активации. Это вызывает процесс химического взаимодействия: сернистый ангидрид окисляется до серного (SO 2 –SO 3), появляются окислы азота. Так, опыты в высокочастотном коронном разряде повысили содержание серного ангидрида до 20-50 % и окисление азота на 0,2–0,3 %.

Горизонтальные многопольные электрофильтры являются аппаратами непрерывного действия. Удаление золы с электродов осуществляется путем их встряхивания без отключения электрофильтра от источника тока и потока дымовых газов. При этом неизбежно попадание части золы в поток газов. Этот процесс получил название вторичного уноса и является основной причиной пониженной эффективности сухих электрофильтров по сравнению с мокрыми, у которых осаждение частиц происходит на водяную или масляную пленку и вторичный унос отсутствует. Величина вторичного уноса находится в прямой зависимости от интервала между встряхиваниями осадительного электрода.

В электрофильтрах отечественного производства встряхивание каждого осадительного электрода производится через 3 мин независимо от запыленности газов, эффективности очистки, скорости газов и т. д. Когда удельное сопротивление золы велико, слой золы препятствует стеканию на заземленный электрод зарядов, непрерывно поступающих на его поверхность. Однако следует учитывать, что обычно на осадительных электродах имеется неотряхиваемый слой толщиной 1–2 мм. Толщина же слоя осевшей за 3 мин золы даже при сжигании высокозольных топлив составляет для первых полей электрофильтра 100-200 мкм. Таким образом, десятикратное увеличение интервала между встряхиваниями незначительно увеличит общую толщину слоя. Поэтому этот интервал можно существенно увеличить. При гидротранспорте золы на золоотвал под бункерами золоуловителей обычно устанавливаются гидрозатворы непрерывного действия с открытым переливом. В этом случае нет дозаторов поступающей золы. Поэтому при одновременном сбросе в них большого количества золы может произойти выбрасывание пульпы или даже сухой золы через открытые лючки гидрозатвора в зольное помещение. Для подсчета максимально допустимого по условиям работы гидрозатвора промежутка времени между встряхиваниями предлагается следующее уравнение:

Здесь с – максимально допустимая концентрация золы в пульпе (500-800 г/л); V – объем пульпы в гидрозатворе, м 3 ; G – расход воды на гидрозатвор, м 3 /с; F – расчетное сечение секции электрофильтра над данным бункером, м 2 ; h – средняя степень золоулавливания; t – промежуток времени между встряхиваниями, с.

При этом период встряхивания каждого электрода

Т = t × п ,

где n - количество электродов над данным бункером.

Было предложено применение вариантов, позволяющих изменять интервал встряхивания. Испытания показали, что увеличение при помощи вариатора интервала встряхивания осадительных электродов первого поля до 30 минут, а последних полей до 2 часов уменьшило количество выносимой из электрофильтра золы (вторичный унос) примерно на 1/3.

Количество выбрасываемой в атмосферу золы зависит кроме КПД электрофильтра еще и от того, какую часть общего времени работы энергоблока отдельные поля электрофильтров находятся в нерабочем состоянии. Чаще всего отключение полей происходит из-за неполадок внутри корпуса электрофильтра, которые могут быть устранены только при полной остановке энергоблока: обрыв проводов коронирующих электродов (чаще всего в результате электроэрозии), обрыв изоляторов и штанг механизма встряхивания, обрыв и заклинивание полос встряхивания и др.

Обследование многих электрофильтров на отечественных электростанциях показывает, что конструкции подводящих газоходов и перфорированной решетки на входе в электрофильтры не обеспечивают необходимой равномерности распределения газов по аппаратам и их сечению. Это приводит к общему снижению общей эффективности золоулавливания даже при нормальном электрическом режиме электрофильтра.